Forklift Starters and Alternators

Forklift Starters and Alternators - Today's starter motor is usually a permanent-magnet composition or a series-parallel wound direct current electrical motor together with a starter solenoid installed on it. As soon as current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion that is located on the driveshaft and meshes the pinion using the starter ring gear which is seen on the engine flywheel.

Once the starter motor starts to turn, the solenoid closes the high-current contacts. As soon as the engine has started, the solenoid consists of a key operated switch which opens the spring assembly in order to pull the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This permits the pinion to transmit drive in just a single direction. Drive is transmitted in this method via the pinion to the flywheel ring gear. The pinion remains engaged, for instance as the driver did not release the key once the engine starts or if there is a short and the solenoid remains engaged. This causes the pinion to spin separately of its driveshaft.

The actions mentioned above will stop the engine from driving the starter. This important step prevents the starter from spinning really fast that it would fly apart. Unless adjustments were made, the sprag clutch arrangement would prevent using the starter as a generator if it was employed in the hybrid scheme discussed prior. Typically a regular starter motor is meant for intermittent utilization which will stop it being used as a generator.

The electrical parts are made in order to operate for around thirty seconds to avoid overheating. Overheating is caused by a slow dissipation of heat is because of ohmic losses. The electrical components are intended to save cost and weight. This is the reason most owner's instruction manuals utilized for vehicles recommend the driver to pause for at least 10 seconds after each ten or fifteen seconds of cranking the engine, when trying to start an engine which does not turn over right away.

During the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Previous to that time, a Bendix drive was utilized. The Bendix system works by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor starts turning, the inertia of the drive pinion assembly allows it to ride forward on the helix, thus engaging with the ring gear. As soon as the engine starts, the backdrive caused from the ring gear allows the pinion to go beyond the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

In the 1930s, an intermediate development between the Bendix drive was made. The overrunning-clutch design which was developed and introduced in the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive consists of a latching mechanism together with a set of flyweights in the body of the drive unit. This was a lot better in view of the fact that the typical Bendix drive used so as to disengage from the ring as soon as the engine fired, although it did not stay functioning.

The drive unit if force forward by inertia on the helical shaft as soon as the starter motor is engaged and begins turning. After that the starter motor becomes latched into the engaged position. When the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for example it is backdriven by the running engine, and then the flyweights pull outward in a radial manner. This releases the latch and allows the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement could be prevented previous to a successful engine start.